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There  a r e  numerous  pape r s  [1-11] on the de te rmina t ion  of the p a r a m e t e r s  of condensed oxide 
p a r t i c l e s  which a r e  f o r m e d  during combust ion of me ta l l i zed  fuels.  The ambigui ty ,  and s o m e -  
t i m e s  the con t rad ic to r iness ,  of the t e s t  r e su l t s  obtained [3-5, 9-11] indicate the diff icul t ies  in 
conducting c o r r e c t  expe r imen ta l  invest igat ions.  In this  connection, numer i ca l  s tudies  using 
m i x t u r e s  of ca l ib ra t ed  l iqu id-meta l  p a r t i c l e s  and different  ga se s  a r e  of p r a c t i c a l  in teres t .  
Different  p r o b e s  can be  ca l ib ra t ed  by using " c a l i b r a t e d '  two-phase  flows, the two-phase  flow 
around mode l s  and p r o b e s  can be studied, as  can the in te rac t ion  between l iqu id -meta l  p a r t i c l e s  
and the f ront  of an ae rodynamic  c o m p r e s s i o n  shock, t he i r  in t rus ion  in different  ent ra in ing 
media ,  the in te rac t ion  between fine p a r t i c l e s  (pa r t i c l e -p ro ]  ecti les) and l a rge  s ize  p a r t i c l e s  
( p a r t i c l e - t a r g e t s ) ,  etc. In many  cases ,  the p r e h i s t o r y  of the flow and the p a r a m e t e r s  of the gas  
m ix tu r e  with the p a r t i c l e s  in the a r e a  of the nozzle  exit  sect ion mus t  be  known to inves t iga te  
the above -men t ioned  phenomena.  The p a r a m e t e r s  of d i f ferent  nonequi l ibr ium flows of m i x t u r e s  
of ga l l ium p a r t i c l e s  and gases  in a Laval  nozzle a r e  inves t iga ted  numer i ca l ly  in this  pape r ;  the 
m a x i m u m  d i a m e t e r  (upper  boundary of the spect rum) of the p a r t i c l e s  (d s = 30 ~) which a r e  not 
des t royed  in the nozzle  under  the effect  of the ae rodynamic  fo rces  and a r e  sui table for  use  in a 
" ca l i b r a t e f f '  two-phase  s t r e a m  is  de termined.  The computat ions  w e r e  c a r r i e d  out in a one-  
d imens ional  approx imat ion  accord ing  to [12-14]. 

Gallium (Ga) is a metal from which calibrated fluid particles can be obtained. 

Some thermophysical properties of gallium [15] are presented in Table 1 (7s is the specific gravity of 
the particles, k is the coefficient of thermal conductivity, c v is the specific heat, ff is the coefficient of sur- 
face tension, and 77 is the coefficient of viscosity). Besides the gallium, its eutectic alloys (Table 2) which 
melt at low temperature (Tin = 276-290 K) are also of great interest for experimental investigations. 

Nonequilibrium one-dimensional flows of mixtures of gallium particles with inert gases, He, CO2, N2, 
as well as with air, taking account of coagulation and aerodynamic crushing, were investigated numerically 
for a Laval nozzle of the following geometry (Fig. i): diameter of the minimal nozzle section d, = 20 ram; 
relative round-off radii of the nozzle throat in the contracting and expanding parts of the nozzle Rt = Rl/d, = 

1 and ~t 2 = R2/d , = i, respectively; the half-angle at the entrance to the contracting conical part of the 
nozzle 01 = 15~ the half-angle at the entrance to the expanding conical part of the nozzle, as well as the exit 
from-the nozzle, 02 = 03 = 2~ the geometric degree of nozzle expansion is fc = Fa/F, = 3.76. 

The gas pressure in the chamber was taken as P0 =i0 bars = const and the temperature as T O =600~ 
in all the computations (in some cases the gas parameters were taken at T O = 573~K). 

Preliminary computations in which the critical Weber number W, was taken equal to W, = 17-22 [2] 
showed that liquid polydispersed gallium particles of d s >_ 35 ~ diameter were crushed during passage of the 
minimal nozzle section. For this reason, a spectrum which is not deformed during acceleration of a two- 
phase stream in a nozzle (in which the gallium particle diameters were in the d s = 0.5-30 ~ range and the 
particle concentration was assumed insignificant) was taken as initial spectrum; parameters of just particles 
of the maximum diameter (ds) max = 30 # were later tracked, since it is expedient to conduct the experiments 
on particles of the greatest size. 
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TABLE 1 TABLE 2 

Thermophysieal 1 Eutectie all~ c~ I 
properties of gallium Ga positionl % T m, ~ 

T m, ~ 302,8 88 Ga, 12 Sn 290 

T b, *K 2503_+283 76 Ga, 24 Sn 288,7 

5,904 30 Ga, 60 In, 10 Sn 285 
solid (at T=293*K ) 62 Ga, 25 In. t3 Sn 2Y8 ;'s' t0--3, kg/m3 

6,095 61 Ga, 25 In, 13 Sn, IZn 276 
liquid (at T=302,8"K) 

0,698 
~r, N / m  " (at  T=573*K} 

TI.10~ ' Nsee/m 2 t,097 
(at T=573*K) 

27 
~ , 'W/m-deg  (at  T=373*K) 

345 
e v, J / k g . d e g  ( at T=573*K) 

The resul ts  of computations a re  represen ted  in Figs. 1 and 2. The dependences w = f ( x / d , )  and w s = 
f ( x / d , ) ,  as well as ~w s = f ( x / d . ) ,  a r e  shown here  for  nonequilibrium flows of mixtures  of gallium par t ic les  
and iner t  gases  (He, N2, CO z ) o r  air.  It can be seen that the magnitudes of the absolute w s and relat ive 
veloci t ies  AWs = [ w -- w s I of the gallium par t i c l e s  in a Laval nozzle depend radical ly  on the thermophysica l  
p rope r t i e s  of the t ranspor t ing  gas and reach compara t ive ly  high values:  upon accelera t ion of gallium pa r t i -  
c les  by a low-molecu la r -weigh t  gas (He, # = 4.002) they acquire  the g rea tes t  values of the absolute and re la -  
t ive veloci t ies  (w s ~ 1300 m / s e c ,  A~0s = 870 m / s e c ) ;  among the var iants  considered at the nozzle exit; when 
a h igh-molecular -weight  gas (CO2,/z = 44) flows around them, they acquire  the least  values of the absolute 
and relat ive velocit ies.  It is in teres t ing that the curves  (Ws = 450 In / sec ,  Aw s = 250 m/sec )  for  gallium p a r -  
t ic les  around which the above-ment ioned gases  flow become para l le l  to each other and to the absc i ssa  axis 
s tar t ing with x / d ,  ~ 3. 

Upon acce lera t ion  of the gallium par t i c les  by helium these curves  AW s = f (x /d , )  a re  charac te r i zed  in 
the contract ing pa r t  of the nozzle by high values of the derivative ~(AWs)/O (x /d . ) ,  which reaches  a maximum 
in the region of the nozzle throat ,  and then s tar ts  to diminish smoothly. 

P r e s e n t e d  in Fig. 2 are  also the resul ts  of computations showing the change in the Mach number  M s 
(the gas motion relat ive to the par t ic les)  along the axis of the experimental  nozzle for different mixtures  of 
gases  and gallium par t ic les .  Computations showed that the grea tes t  values of the Mach number  a re  achieved 
in the a rea  of the nozzle exit section, where  they hence a re  ~1 for  mixtures  of gallium par t i c les  with nitrogen, 
air ,  and carbon dioxide gas, while they a re  g rea t e r  than 1 (Ms = 1.34) for a mixture  of helium and gallium 
par t ic les .  The quantity Ms > 1 means  that the velocity of helium flow around the gallium par t i c les  became 
supersonic  in the a rea  of the nozzle exit section; detached compress ion  microshocks  originated in front of 
the par t i c les ,  while wakes extended along the s t r eam appeared behind the par t ic les .  

It follows f rom resul ts  of a computation of T = f ( x / d .  ) and T s = f ( x / d . )  that when a low-molecu la r -  
weight gas (He) was blown over  the gallium par t ic les ,  they were  cooled intensively and apparently solidified 
in the a rea  of the nozzle exit section, since the par t ic le  t empera tu re  (T s = 280 K) is less  than the gallium 
melt ing point (Tm = 302.8 K). When a h igh-molecu la r -weigh  gas (CO2) as  well as nitrogen and a i r  flowed 
over  the gallium par t ic les ,  the i r  t empera tu re  along the nozzle length var ied  slightly and exceeded the gallium 
melt ing point in the a rea  of the nozzle exit section, and the par t i c les  remained  fluid in these cases.  Accord-  
ing to the computations,  the magnitude of the t empera tu re  lag in the gallium par t i c les  depends slightly on the 
thermophys ica l  p roper t i e s  of the t ranspor t ing  gas and does not exceed ZxTs = I T - Ts I = 250 K in the a rea  of 
the experimental  nozzle exit in all the var iants  considered.  

The change in Reynolds Re s and Weber  Ws numbers  along the nozzle length was also investigated in 
the r e s e a r c h  for  the mix tures  of gases  and gallium pa r t i c l e s  under consideration. It is seen from the compu- 
tat ions that these curves  a re  s imi la r  in the nozzle:  the i r  maxima a r e  in the region of the nozzle throat  (for  
x /d ,  ~ 3) where  the gas density is still sufficiently high and the relat ive velocity I w - w s I reaches  the limit 
value. Fu r the rmore ,  a rapid diminution in the numbers  Re s and W s occurs  along the nozzle axis because  of 
the rapid diminution in the gas density. It is seen in Fig. 2 that the number  Res  has the grea tes t  value 
(Res = 1650) upon acce lera t ion  of the gallium pa r t i c l e s  by carbon dioxide in the experimental  nozzle, and it 
has the leas t  value (Re s = 651 ) upon acce lera t ion  by helium. The p ic ture  is the r e v e r s e  for the Weber  c r i -  
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ter ion:  the g rea tes t  value (Ws = 22) is obtained when helium is blown around the gallium par t i c les  and the 
least  (W s = 14) when carbon dioxide is blown around the gallium par t ic les .  Obtaining cal ibrated liquid pa r t i -  
cles of fusible meta ls  is possible  at this t ime by using special drop genera tors .  To obtain a "cal ibrated" two- 
phase  gas mixture  of a i r  and gallium par t i c les ,  for  example, with a t ranspor t ing gas discharge of G _< 0.7 
k g / s e c  and its heating to T ~600 K, it is requi red  to del iver  a W < 190 kW power  to the apparatus,  as com-  
putations show. 

The authors  a re  grateful  to V. K. Starkov and U. G. P i rumov  for  discussing the resul ts  of the r e sea rch  
and to N. lVi. Alekseev for aid in const ruct ing the graphs.  
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